Research Updates

April 2023

High Operating Temperature Mid-Infrared InGaAs/GaAs Submonolayer Quantum Dot Quantum Cascade Detectors on Silicon

Monolithic integration of infrared photodetectors on a silicon platform is a promising solution for the development of scalable and affordable photodetectors and infrared focal plane arrays. We report on integration of submonolayer quantum dot quantum cascade detectors (SML QD QCDs) on Si substrates via direct growth. Threading dislocation density has been reduced to the level of similar to 10(7) cm(-2) with the high-quality GaAson-Si virtual substrate. We also conducted a morphology analysis for the SML QD QCDs through a transmission electron microscope strain contrast image and to the best of our knowledge, high quality InGaAs/GaAs SML QDs were clearly observed on silicon for the first time. Photoluminescence decay time of the as-grown SML QD QCDs on Si was measured to be around 300 ps, which is comparable to the reference QCDs on lattice-matched GaAs substrates. With the high-quality III-V epitaxial layers and SML QDs, the quantum cascade detectors on Si achieved a normal incident photoresponse temperature up to 160 K under zero bias.

Read the full article: High Operating Temperature Mid-Infrared InGaAs/GaAs Submonolayer Quantum Dot Quantum Cascade Detectors on Silicon