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The concept of gauge fields plays a significant role in many 
areas of physics, from particle physics and cosmology to 
condensed-matter systems, where gauge potentials are a 
natural consequence of electromagnetic fields acting on 
charged particles and are of central importance in topological 
states of matter1. Here, we report on the experimental real-
ization of a synthetic non-Abelian gauge field for photons2 
in a honeycomb microcavity lattice3. We show that the effec-
tive magnetic field associated with transverse electric–trans-
verse magnetic splitting has the symmetry of the Dresselhaus 
spin–orbit interaction around Dirac points in the dispersion, 
and can be regarded as an SU(2) gauge field4. The symmetry 
of the field is revealed in the optical spin Hall effect, where, 
under resonant excitation of the Dirac points, precession of 
the photon pseudospin around the field direction leads to 
the formation of two spin domains. Furthermore, we observe 
that the Dresselhaus-type field changes its sign in the same 
Dirac valley on switching from s to p bands, in good agreement 
with the tight-binding modelling. Our work demonstrating a 
non-Abelian gauge field for light on the microscale paves the 
way towards manipulation of photons via spin on a chip.

Gauge fields are central to the description of fundamental forces 
and can carry profound physical consequences. In the case of elec-
tromagnetism, for example, the significance of the magnetic vector 
potential A

I
 is revealed by a quantum-mechanical phase shift expe-

rienced by charged particles in the celebrated Aharonov–Bohm 
(AB) effect. Although this is a manifestation of a U(1) Abelian 
gauge field with scalar components, there also exist spin-dependent 
vector potentials with non-commuting components (first consid-
ered by Yang and Mills), that is, SU(2) non-Abelian gauge fields5. 
In condensed-matter physics, the non-Abelian framework is also 
highly relevant6, in particular to the theory of spin–orbit coupling 
(SOC) in solids7,8, which plays an indispensable role in the family 
of spin Hall effects9, topological insulators and superconductors1, 
as well as the operation of spintronic devices10. On the other hand, 
photons—neutral particles with zero magnetic moment—can also 
behave as if affected by both Abelian and non-Abelian gauge fields 
in suitably designed environments11. These allow the exploration 
of gauge field Hamiltonians in the optical domain, and a means 
of manipulating light trajectories and internal degrees of freedom 
such as spin (polarization) for spinoptronic signal processing appli-
cations12. Abelian gauge fields have been engineered in diverse plat-
forms including silica waveguides13, metamaterials14, silicon ring 
resonators15,16 and liquid-crystal optical cavities17. By contrast, the 
realization of non-Abelian gauge fields in photonic microstructures 

and thus enabling manipulation of light via spin on a chip remains 
a significant challenge.

One possible way to implement artificial non-Abelian gauge 
fields on the microscale in a monolithic structure is to use the 
reduced spatial symmetry of birefringent18,19 or laterally pat-
terned4,20 semiconductor microcavities along with native transverse 
electric–transverse magnetic (TE–TM) splitting (photonic SOC). 
Honeycomb lattices are of particular interest, because they provide 
access to the physics of graphene and related materials, including 
the Dirac dispersion3, edge states21 and influence of strain22, all in a 
controlled photonic environment in which some of the limitations 
of real graphene can be overcome. Importantly, although graphene 
itself suffers from small SOC, which prevents observation of the spin 
Hall effect, the photonic SOC can be enhanced in wavelength-scale 
photonic lattices23,24, enabling the physics of non-Abelian gauge 
fields in graphene geometries to be explored.

In this Letter, we utilize a patterned GaAs-based microcavity 
with a honeycomb lattice geometry (Fig. 1a)—that is, photonic 
graphene—to study the influence of photonic SOC on the disper-
sion. In this setting (see Methods for sample details), which was 
previously considered theoretically in ref. 4, the interplay between 
the SOC and the reduced spatial symmetry imposed by the lattice 
transforms the double winding effective magnetic field associated 
with TE–TM splitting into a Dresselhaus-type field with a single 
winding locally around the Dirac points, which can be described 
in terms of a non-Abelian gauge field. Here, we visualize the field 
texture around these high symmetry points, and further confirm 
the Dresselhaus symmetry by the optical spin Hall effect (OSHE) 
revealing the formation of two cross-polarized spin domains. Our 
results are in good agreement with the theory presented in ref. 4 
and demonstrate the potential for engineering artificial gauge fields 
for photons in different orbital bands using model two-dimensional 
(2D) lattice systems. Finally, we note that the non-Abelian AB effect 
has been observed recently by cascading non-reciprocal optical ele-
ments in a fibre-optic set-up (that is, not on the microscale and gov-
erned by physical mechanisms that are very different from those 
reported in the present manuscript)25.

To measure the dispersion relation of our sample we use low-power 
incoherent excitation to populate all modes. The band structure 
features linear Dirac crossings at characteristic momenta, namely 
the K and K0

I
 points at the Brillouin zone (BZ) corners (Fig. 1b),  

which are visible in the angle-resolved photoluminescence (PL) 
spectra shown for the fundamental s bands and higher-energy  
p bands plotted along high-symmetry directions in Fig. 1c,d  
(different slices of momentum space are selected for maximal  
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signal intensity; Supplementary Section 5). By resolving the emis-
sion in linear polarization, the orientation of the TE–TM splitting 
effective magnetic field at each energy and momentum can be 
revealed, because it corresponds to the pseudospin of the eigen-
state. Hence, to characterize the pseudospin texture and therefore 
the field orientation across momentum space, we measure the first 
two Stokes parameters S1 and S2 of the emission (Methods). For 
both s and p bands, a pronounced splitting between TE and TM 
modes (which have horizontal (H) and vertical (V) polarization 
for the directions plotted) is visible, which is well described using a 
TB formalism including SOC as in refs. 4,26 (Methods). Importantly, 
the pseudospin changes sign as the k vector passes through a Dirac 
point, as we show using a zoom on the K point. This suggests that, 
locally, around a K or K0

I
 point the dependence of TE–TM splitting 

on momentum differs from that found in a planar cavity around 
k ¼ 0
I

. To study this polarization behaviour in more detail, we con-
structed 2D energy-resolved polarization maps using tomographic 
imaging (Methods).

First we will focus on the s bands. In Fig. 2, we see 2D maps 
of the linear polarization angle ϕ in momentum space, calculated 
as 2ϕ ¼ arctanðS2=S1Þ

I
. For the Γ point, which corresponds to the 

emission around k ¼ 0
I

 at the energy minimum of the dispersion, a 
quadrupole pattern can be seen (Fig. 2a). Arrows showing the pseu-
dospin texture (orientation of the effective magnetic field) reveal the 
familiar dipolar field associated with TE–TM splitting in microcavi-
ties. Figure 2c,e shows the corresponding maps at the energy of the 
Dirac points. In contrast to the Γ point, the local symmetry around 
K and K0

I
 no longer has a double azimuthal dependence. Rather, 

there is a single winding of the pseudospin with the characteristic 
texture of a Dresselhaus-type field27. We note that the local effec-
tive magnetic fields have opposite sign around the K and K0

I
 points, 

although the direction of field rotation is the same (counter-rotating 
with the azimuthal angle). These features can also be seen clearly 
in calculations using the TB model of ref. 4 (Fig. 2b,d,f), where 

there is excellent agreement with the experiment. As we show in 
the Methods, using a suitable minimal coupling transformation the 
observed effective field around the Dirac points can be described in 
terms of a non-Abelian gauge field with non-commuting compo-
nents. By contrast, around the Γ point, the SOC has the same form 
as for unpatterned microcavities and cannot be described in terms 
of a synthetic gauge field.

One of the clearest manifestations of the effective magnetic field 
acting on photons is the formation of spin currents in the OSHE, 
caused by pseudospin precession around the k-dependent effective 
magnetic field28. At a given energy, the wavevector and polarization 
of the injected light can be used to control the spin texture of the 
emission, because the pseudospin rotation depends on the relative 
angle between its initial direction and the effective field. We use 
this knowledge to unveil the different symmetries shown in Fig. 2 
by imaging the time-integrated real space emission of our sample 
under continuous optical excitation at the Γ, K and K′ points with 
a linearly polarized pump. We vary the energy and angle of the 
incoming laser to excite these points in the dispersion and measure 
the resulting emission intensity in right and left circular polariza-
tions to determine the Stokes parameter S3 (Methods). In Fig. 3a 
we show how resonant excitation at the Γ point under H-polarized 
excitation indeed leads to the observation of four domains with 
alternating circular polarization, confirming that at the energy 
minimum of the dispersion, at the centre of the BZ, the effective 
magnetic field in Fig. 2a has the same form as that of conventional 
planar microcavities4,29. In contrast, under H-polarized pumping 
at the K point (Fig. 3c), only two domains are seen, formed to the 
left and right of the pump spot and with opposite circular polar-
izations as expected from the Dresselhaus symmetry surrounding 
the Dirac points (Fig. 2c,e). This is expected, because the injected 
pseudospin vector lies parallel/anti-parallel to the field direc-
tion along the ky axis in the locally excited region of momentum 
space, so there should be no evolution of the pseudospin along y. 
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Fig. 1 | Photonic graphene sample and dispersion relations. a, Scanning electron microscope image of the honeycomb lattice. b, Schematic of the 
reciprocal space lattice. c, Polarization-resolved PL spectra showing s bands along the dashed green line in b with tight-binding (TB) calculations  
(solid curves). Left: horizontal polarization (H). Middle: vertical polarization (V). The white squares inside the dotted rectangles show the peak positions 
extracted from the experimental data. Right: corresponding polarization-resolved dispersion relation calculated by the TB model. Es0

I
 is 1.4551 eV. 

e, Zoom-in on the dotted rectangles in c. The red and blue squares (lines) show the experimental (theoretical) horizontal and vertical dispersions, 
respectively. d,f, Same as in c and e but for the p bands, shown along the purple dashed line in b. Ep0

I
 is 1.4582 eV. a is the lattice constant.
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When the excitation angle is changed to excite the K′ point instead  
(Fig. 3e), the pattern is reversed, as expected, because the sign of the 
Dresselhaus-type field is opposite. Our results are in strong quali-
tative agreement with theoretical spin patterns calculated using  
the gauge-field Hamiltonian (Supplementary Section 1) as well as 
the numerical simulations of ref. 4. In Fig. 3b,d,f we demonstrate 
that, upon changing to V-polarized excitation, the patterns shown 
in Fig. 3a,c,e are all reversed because the initial pseudospin vector 
points in the opposite direction28, which confirms that the observed 
spin patterns result from precession of the pseudospin vector in  
the OSHE regime.

Now we turn our attention to the p bands. Using the same 
procedure as that of Fig. 2, we determine the texture of the effec-
tive magnetic field across momentum space at the energy of the 
Dirac points to reveal the local symmetry surrounding the K and 
K′ points. The full momentum space linear polarization map 
(Supplementary Section 5) confirms that the local symmetry 
around these points has the form of Dresselhaus SOC (with oppo-
site sign for K and K′), as is the case for the s bands. We show the 
field surrounding a K point in Fig. 4a, where a clear single winding 

of the Dresselhaus type is visible. Note that the sign of the field for a 
given valley (K or K′) is opposite to the case of the s bands (as seen 
also in Fig. 1). Our finding is supported by the TB model developed 
for the p orbitals26, where the calculated field texture shows excel-
lent agreement (Fig. 4b). To further confirm the Dresselhaus-type 
fields, we performed OSHE measurements by coherently exciting 
the p bands. In Fig. 4c–f we show results for resonant excitation of 
the K and K′ points at ky=ð2π=3

ffiffiffi
3

p
aÞ ¼ ± 2

I
 (Fig. 4c,e respectively). 

Clear two-fold circular polarization patterns can be seen, which 
rotate when the excitation polarization is changed from H to V 
(Fig. 4d,f). These findings are in good agreement with theoretical 
calculations (Supplementary Section 1).

In summary, we have experimentally demonstrated the existence 
of local Dresselhaus-type fields surrounding the Dirac points in 
photonic graphene, confirmed by the generation of two-fold circu-
lar polarization patterns in the OSHE. Our findings constitute the 
realization of a synthetic SU(2) non-Abelian gauge field induced by 
the presence of the honeycomb periodic potential, which leads to a 
TE–TM effective magnetic field with a modified texture at specific 
points in momentum space. We note that although such fields may 
be engineered in other lattices featuring Dirac cones, such as Kagome 
lattices30, it is not possible in other geometries such as Lieb lattices 
due to the square symmetry. Practically speaking, our findings offer 
a means of separating and routing spins, where the single-winding 
effective magnetic field (odd in k) analogous to electronic systems 
is highly advantageous because it leads to counter-propagation 
of opposite spins. Further fundamental consequences of the 
non-Abelian gauge field on the motion of wavepackets may be stud-
ied using the zitterbewegung effect (Supplementary Section 3). This 
field is also responsible for the emergence of topologically nontrivial 
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gaps in the polariton spectrum in the presence of external magnetic 
fields breaking time-reversal symmetry (which is not broken in our 
system)31,32. In microcavities with a small exciton–photon detun-
ing, the addition of spin-anisotropic polariton–polariton interac-
tions to the present system opens up new possibilities, including 
spin-dependent Klein tunnelling20, interaction-induced topological 
phase transitions33 and potentially a nonlinear modification of the 
spin domains34. We also anticipate that, in principle, the gauge field 
realized in our system may be engineered in other platforms such 
as photonic crystals based on thick slab waveguides with small TE–
TM splitting35 or plasmonic lattices36. The study of the non-Abelian 
gauge fields acting on photon spin in topological lattices with special 
symmetries would also be an interesting research direction37.
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Methods
Sample description. Our sample is a GaAs microcavity with 23 (26) top (bottom) 
GaAs/Al0.85Ga0.15As distributed Bragg reflector pairs and six In0.04Ga0.96As 
quantum wells, as previously described in ref. 38. The sample was processed using 
electron-beam lithography and plasma dry etching to pattern arrays of micropillars 
with 3-μm diameters and an etch depth on the order of 8 μm. We studied a 
honeycomb lattice with a pillar-to-pillar separation of 2.8 μm and dimensions of 
~120 × 100 μm2. The cavity–exciton detuning was approximately −23 meV. The 
Q factor of the structure was determined to be ~16,000 from the linewidth of 
0.09 meV. The size of the TE–TM splitting was ~0.12 meV at k = 1 μm−1.

Excitation scheme. To characterize the dispersion relation of the honeycomb 
lattice, a low-power non-resonant diode laser was used in reflection geometry 
to incoherently populate all of the lattice modes. To study the formation of 
pseudospin domains, we excited the lattice in transmission geometry with a 
continuous-wave Ti:sapphire laser tuned to be resonant with the honeycomb 
lattice dispersion. Different states can be excited by varying the energy and angle 
of incidence θ of the Gaussian laser beam, the latter of which is changed using a 
translation stage to move the lateral position of the beam before the excitation 
objective. This allowed us to accurately control the in-plane wavevector of the 
injected wavepacket because k =  ω

c

� �
sin θ

I
, where ω is the laser frequency. The 

linear polarization of the injected wavepacket can also be controlled through the 
use of a linear polarizer and half wave plate in the excitation path. The excitation 
beam has a full-width at half-maximum of ~15 μm.

Detection scheme. To characterize the pseudospin texture around the Γ, K and K′ 
points, we measured the polariton PL emission under non-resonant excitation  
(in the low-density regime far below the condensation threshold) by employing a 
half wave plate and linear polarizer in the detection path to measure the first two 
Stokes parameters. These are given by S1 = (IH − IV)/(IH + IV) and S2 = (ID − IA) 
/(ID + IA), where IH, IV, ID and IA give the intensity of emitted light in the horizontal, 
vertical, diagonal and anti-diagonal polarizations, respectively. By scanning the 
final lens across the spectrometer slit, multiple E versus k slices were recorded 
(corresponding to different wavevectors in the direction orthogonal to the 
spectrometer slit), allowing 2D energy-resolved polarization maps to be constructed. 
Each map shows a small spectral window of ~20 μeV around the energy of the Γ 
or Dirac points. Because polariton modes have finite linewidth, there is non-zero 
PL intensity at k vectors away from these points (for example, ∣k − K∣ > 0). This PL 
emission arises from the tail of polariton modes with maxima at energies tens or 
hundreds of μeV above (or below) the specific energy of interest due to polariton 
dispersion. The lower intensity of the tails leads to decreased signal-to-noise ratio 
for further away k vectors, as seen in Figs. 2 and 4.

For the resonant transmission measurements the half wave plate was replaced 
by a quarter wave plate to measure the third Stokes parameter, which is given 
by S3 ¼ ðIσþ � Iσ� Þ=ðIσþ þ Iσ� Þ

I
, where Iσþ

I
 and Iσ�

I
 correspond to the emission 

intensity in the right and left circular polarizations, respectively.

Gauge field representation. The pseudospin patterns in Fig. 2 correspond to 
the eigenstates of the polariton graphene effective Hamiltonian, which has the 
following form in the vicinity of the Dirac points4:

HDðqÞ ¼ _vF τzqxσx þ qyσy
� �

þ Δ τzσy  sy � σx  sx
� �

ð1Þ

where q is the wavevector deviation from the corresponding Dirac point set by the 
valley index τz = ±1, vF is the effective Fermi velocity, σ and s are the sublattice and 
polarization pseudospin operators, and Δ is the effective photonic SOC strength23. 
Prefactors of both terms in Hamiltonian (1) may be expressed in the TB model 
parameters: ℏvF = 3Ja/2, Δ = 3δJ/2 (see next section in Methods for additional 
details). The spin–orbit term may be included in the low-energy graphene 
Hamiltonian, represented by the first term in equation (1), with minimal coupling 
transformation q ! q� A

I
 with the gauge field components given by

Ax ¼ � Δ

_vF
τzsx ; Ay ¼

Δ

_vF
τzsy ð2Þ

The artificial gauge field (2) is non-Abelian because the components do not 
commute20. This field is responsible for the suppression of Klein tunnelling20 and 
emergence of topologically nontrivial bandgaps of the polariton spectrum in the 
presence of external magnetic fields31,32. Polarization spectral splitting may be also 
attributed to the effective magnetic field, acting on polariton pseudospin. In the 
range of energies Δ ≪ ∣E∣ ≪ ℏvF/a this effective SOC is given by the Hamiltonian 
term HD

SOCðqÞ ¼ ±Δ qxsx � qysy
� �

=q

I

, sharing the same angular dependence 
with the Dresselhaus spin–orbit term in electron systems27, but constant in the 
wavevector absolute value q. Note that the sign of the splitting inverts with both 
valley index τz and the sign corresponding to upper and lower Dirac cones.

The Hamiltonian (1) close to Dirac points thus drastically differs from its 
counterpart in the vicinity of the Γ point

HΓðkÞ ¼ _2k2=ð2mÞ þ β sxðk2x � k2yÞ þ 2sykxky
h i

ð3Þ

where the first term corresponds to a free particle with effective mass m = ℏ2/(3Ja2) 
and the second term describes the action of TE–TM splitting, corresponding to 
the effective magnetic field with components Ωx ¼ βa2ðk2x � k2yÞ

I
 and Ωy = 2βkxky 

with β = 3δJa2/8, related to the TB model parameters (see next section in Methods 
for details). Note that the quadratic dependence of the effective magnetic field on 
the components of k, fully similar to those reported for the case of an unpatterned 
cavity, precludes its description in terms of the minimal coupling to a synthetic 
gauge field and leads to the difference of the effective masses of the longitudinal 
and transverse polariton modes, ml,t = m(1 ± 2mβ/ℏ2)39.

Effective field derivation near the Dirac point. The effective magnetic field acting 
on the polariton pseudospin near the Dirac point is obtained by development of 
the TB Hamiltonian4:

Hk ¼ �Jσþ � δJσþ  f þk sþ þ f �k s�
� �

þ h:c: ð4Þ

Although the local gauge fields in the vicinities of Dirac points K and K′ 
were studied in ref. 4, the effective field given by formula (3) near the Γ point, 
reproducing the symmetry and quadratic k dependence of the TE–TM field in 
planar microcavities, is also inherent to Hamiltonian (4). In the latter case, the 
splitting is due to the second-order terms in the complex coefficients:

f k ¼ 3 1� k2a2

4

� �
; f ±k ¼ � 3i

2
k± a�

3
8
k2± a

2 ð5Þ

where k± = kx ± iky. The energy dispersion near the ground state in the 
corresponding order then reads

E ±
k ¼ �3J 1� k2a2

8
1� δJ2

J2
±
δJ
J

� �� �
ð6Þ

and the Hamiltonian has the form of interaction with the effective TE–TM field (3) 
of strength given by β = 3δJa2/8.

TB parameters used to fit experimental data. To fit the experimental dispersion 
relations in Fig. 1, for the s bands we use J = 0.12 meV and δJ = 0.018 meV. To 
account for a small asymmetry of the dispersion about the Dirac energy (visible at 
the Γ point), we add a next-nearest-neighbour correction of −0.008 meV (ref. 3).  
For the p bands we used the TB model of ref. 26 with J = −0.6 meV and δJ = 
0.05 meV, which describes tunnelling of p orbitals with lobes oriented along the link 
connecting micropillars. In our notation J and δJ corresponds to t and Δt in ref. 26.

Data availability
The data that support the findings of this study are openly available from the 
University of Sheffield repository at https://doi.org/10.15131/shef.data.13060610.
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